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Mixture states and storage of biased patterns in the Hopfield model:
A replica-symmetry-breaking solution
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A learning rule is introduced to store a finite number of biased and an extensive number of unbiased
patterns in the Hopfield model. This learning rule enhances the retrieval capacity of the biased patterns
and totally suppresses the unwanted symmetric mixture states. Temperature-capacity and capacity-bias
phase diagrams are discussed within the one-step replica-symmetry-breaking approach.

PACS number(s): 87.10.+¢, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

In general, for the storage and retrieval of correlated
patterns in neural networks, the mixture states involving
several patterns [1] are important since the state of the
network must have a nonzero overlap with all the pat-
terns. The symmetric mixture states represent confusion
of the network, i.e., they describe the inability of the net-
work to perceive the details distinguishing the different
patterns. Hence they should be totally suppressed.
Different methods have been considered that diminish the
existence region for these types of states, e.g., a global dy-
namic constraint [2], or an adjustable uniform field [3].
For finite loading of biased (i.e., statistically independent
but effectively correlated) patterns a different learning
rule has been proposed [4] allowing no symmetric mix-
ture states.

In these schemes some of the asymmetric mixture
states now describe the retrieval behavior of the network.
Hence a detailed study of these different mixture states is
certainly of interest.

In this paper we consider the loading of a finite number
of biased patterns in the presence, however, of an exten-
sive number of unbiased patterns. Within the mean-field
theory approach to the Hopfield model, we compare the
performance of the Hebb rule with an alternative learn-
ing rule allowing no symmetric solutions at all. As men-
tioned before, asymmetric solutions take over the re-
trieval function in the latter case. We assume condensa-
tion of the biased patterns. It is found that this alterna-
tive learning rule significantly enhances the retrieval
capacity of these biased patterns. A similar enhancement
effect from rewriting the Hebb rule has been discussed in
the case of unbiased patterns in [5,6]. For related work
on the problem of confusion using a dynamical approach
we refer to [7] and the references cited therein.

Guided by the strong reentrance behavior in related
replica-symmetric results for the Q =3 Potts network [8],
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and by some replica-symmetric entropy estimates, we
especially examine the effect of one-step replica-
symmetry breaking (RSB). This effect is substantial and
the retrieval capacity for the biased patterns is further
enhanced.

The rest of this paper is organized as follows. In Sec.
IT the model is defined. Section III derives the mean-field
free energy for this model within one-step replica-
symmetry breaking. In Sec. IV the solutions of the
fixed-point equations are discussed and the corresponding
temperature-capacity and capacity-phase diagrams are
obtained. Finally Sec. V presents some concluding re-
marks.

II. MODEL
We consider the fully connected Hopfield model

N
=1 —
=—3 X 5SS, S;=%1 (1)
ij=1
i7j

where the synaptic couplings Ji; between the binary neu-
rons i and j are given by the learning rule
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The stored patterns {£#}, u=1,...,p, are chosen to
be independent random variables. A finite number p of
these patterns is allowed to be biased, i.e., those {&%},
i=1,...,N;u=1,...,p take the values +1 with proba-
bility P(&¢==x1)=(1%a)/2. Here a €[ —1,1] is the bias
parameter. Due to the Ising symmetry of the model only
the bias interval [0,1] needs to be considered. The other
(p —P) patterns have zero bias.

The learning rule (2) consists of two parts. The biased
patterns are stored according to the first part. For each
such pattern the learning rule mixes in all the other
biased patterns by subtracting the average over these pat-
terns. As is clear from the second part, the unbiased pat-
terns are stored according to the Hebb learning rule. For
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v =w =0 we find the standard Hebb rule. Taking the
limit p— oo the subtractions 37.,£7/(F—1) become
equal to the bias a by the law of large numbers. Hence in
this limit the learning rule (2) with v =w =1 and p =p
reduces to the standard Hebb rule for biased patterns
studied in [2].
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with A=1, ..., n the replica index,
Here the following order parameters are introduced:
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III. MEAN-FIELD THEORY: A ONE-STEP
REPLICA-SYMMETRY-BREAKING ANALYSIS

Assuming condensation of the p biased patterns and
using standard mean-field techniques [1,9], one finds the
following expression for the free energy:
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(3)

)) denoting the average over the p biased patterns.
(4)

(5)

) stands for the thermal average. So the m ua, describe the macroscopic overlap with the condensed pat-

terns and the g,,. are the Edwards-Anderson order parameters.
Using the one-step RSB scheme with the following assumption for the order parameters m ,, and g, [10-12]:
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where a,5,=1,...,n/k,a,,5,=1,
following expression for the free energy per neuron:

(6)

., k, and 0<k <n, we obtain after some tedious but standard calculations the
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where C, =p(1—gq,).
vw A} , The extrema of the free energy (7) can be found by
(F—1)? 21 21 my |8 ®) studying the fixed-point equations for m,,, g4, and Cj, to-
: . = gether with the saddle-point equation obtained by taking
the derivative of f with respect to k. Since the way to

Dz =dz(27)" V2 exp(—22/2) , 9)

derive these formulas is standard and since their explicit
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expressions are algebraically complicated we do not write
them down.

For arbitrary values of v and w these fixed-point equa-
tions allow the following solutions: asymmetric solutions
m=(m,,m1.,,71, e ,mﬁ_l),ql,qorﬁo, which have re-
trieval properties (m; >> m,_y ); symmetric solutions
m=(mg,...,m, ),q1,9070 representing confusion in
the network; spin-glass solutions m=0,q,,9,70 and a
paramagnetic solution m=0,g,=¢q,=0. There are no

symmetric solutions of the form
m=(m,,...,m,,0,...,0) with n=p, and hence no
Mattis solutions. For the specific values

v=w=1v=1,w=0 and v=0,w =1, the unwanted
symmetric solutions do not exist.

In the following section we analyze these fixed-point
equations numerically. First we discuss the results for
the replica-symmetric approximation to this network.
The corresponding free energy is obtained by taking the
limit k —0 and g, —g¢, [10]. Guided by some related re-
sults for the Q =3 Potts model [8] where the capacity for
v=w=1 1is always larger than the -capacity for
v=1,w =0 and the one for v =0,w =1 we will restrict
ourselves to the case v =w =1 and its comparison with
the Hebb rule (v =w =0). Secondly we explain the one-
step RSB results.

IV. RETRIEVAL PROPERTIES
AND PHASE DIAGRAMS

A. Replica-symmetric results at zero temperature

For the asymmetrical retrieval solutions the fixed-point
equations for m,, and g, can be further reduced at T =0
to only one fixed-point equation in
y=p(m, ——mp_l)/(p'——l)\/2q0r0. An expansion of this
equation in terms of y and inspection of the sign of the
coefficient of the third order term teaches us that the or-
der of the transition from the asymmetrical retrieval
phase to the spin-glass phase depends on the number of
biased patterns p and the bias parameter a. For p <4 the
transition is always second order. For p =5 it is first or-
der if a€[0,V11/45) and second order if
a€[V'11/45,1], and for p =6 it is always first order.
The second order transition occurs at
2 2
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This condition implies that in the limit a—0 retrieval is
only possible in a restricted region of the interval
a €[0,1]. On the other hand, a standard signal-to-noise
ratio analysis predicts retrieval in the whole bias interval
[0,1]. This at first sight contradictory result is explained
by the fact that we have also found asymmetric retrieval
solutions which exist for all a €[0,1]. However, they are
unstable.

Looking at Table I, we can compare both the retrieval

TABLE 1. The capacity a. for the Hopfield network with
v=w =1, p biased, and p —p unbiased patterns for a =0; the
bias interval [a;,a,] where this model has a smaller capacity
than the v =w =0 model and the maximal bias a. above which
no stable retrieval solutions exist.

P a.(a=0) [ay,a,] a.(v=w=1) a(v=w=0)
2 5.7296 [0.842,1] 0.866 1
3 0.9947 0.754 0.707
4 0.3851 0.661 0.577
5 0.2130 0.599 0.500
6 0.1621 [0.154,0.351] 0.552 0.447
7 0.1430 [0.068,0.335] 0.523 0.408
8 0.1345 [0,0.317] 0.508 0.378
9 0.1303 [0,0.300] 0.535 0.354
10 0.1283 [0,0.285] 0.549 0.333
100 0.1356 [0,0.090] 0.871 0.101

capacities of the v =w =1 model and the v =w =0 mod-
el. The latter has been studied in [13]. For a =0 the
v =w =0 model reduces to the standard Hopfield model
such that we find a maximal storage capacity a, =0.1379
for all values of p. This is in contrast with the v =w =1
model. As can be read off from the first column, the
latter has a retrieval capacity larger than 0.1379 for p <7,
whereas for p>7 it is somewhat smaller, attaining a
minimal value for p=12. This does not mean that the
overall storage capacity of the network is increased but it
indicates that the biased patterns p can still be retrieved
when the network is loaded with a total number of pat-
terns greater than 0.1379N. Asymptotically, for large p,
the retrieval capacity converges to the value o, =0.1379.
This behavior is changed by introducing a bias. In this
case the retrieval capacity of the v =w =1 model exceeds
that of the v =w =0 model, except in the interval
[a,,a,], indicated in the second column.

For both models there exists a maximal bias a, above
which no stable asymmetrical retrieval solutions exist.
These values are given in the third and fourth columns
of  Table I. We  find that for p=3,
a.(v=w=1)>a.(v =w =0), indicating that for the
v =w =1 model stable asymmetrical retrieval solutions
exist in a larger bias region. We note that for p=2, 3, 4,
and 5 (in the second order regime) the values of
a.(v=w =1) and a, correspond with (12).

Finally we remark that in the limit 5 — oo the storage
capacity does only converge to the value corresponding
to the Hebb rule for biased patterns [2] when p =p. Oth-
erwise, for p >p, it is smaller for all values of a0, e.g.,
for a =0.4 we find 0.0314 versus 0.0481.

B. Replica-symmetric results at finite temperature

Let us now turn to the replica-symmetric results for
T+0. Some typical T-a phase diagrams are presented in
Figs. 1 and 2. The line T, (dash-dotted line) indicates the
transition from the spin-glass solutions to the disordered
paramagnetic solution. This transition is second order
and occurs at Tg=l+\/a. It is identical to the one in
the Hopfield model with the Hebb rule and zero bias [1].
In the region bounded by the line T, (solid and dashed
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lines) asymmetric retrieval solutions exist and they are
the local minima of the free energy. The transition from
the asymmetric retrieval solutions to the paramagnetic
solution is second order (dashed line). The transition

temperature reads

_P

p—1

2

T,=(1—a?

4
p—1

(1—a?)

2 2
for 0<a= —1] . (13)

Finally the transition from the retrieval solution to the
spin-glass solution can be first or second order (solid, re-
spectively, dashed line). For p <4 it is second order for
all temperatures. From p =35 onwards it starts being first

order at low temperatures. For p— oo it is first order at

all temperatures.
Figure 1 shows that the introduction of a bias leads to

a smaller retrieval region. However, the overall shape of
the T, line remains the same. From Fig. 2 one learns
how the T, line and hence the retrieval region behaves
with increasing p. Asymptotically, for p— o the T, line
resembles the Mattis transition line in the Hopfield model

1.6

= 0.8

0.4

FIG. 1. The T-a diagram for the Hopfield
network with v =w =1, p=3 biased, and p —p
unbiased patterns for ¢ =0 and 0.4. The
meaning of the curves is explained in the text.

[1]. Compared with the v =w =0 rule [13] the retrieval
region in the T-a plane is always larger in the present
model.

From both phase diagrams we also learn that a. in-
creases for all temperatures for p <6. From p=6 on-
wards it only increases at low temperatures and in the
neighborhood of the maximal transition temperature T .
We expect this behavior in these regions to be a conse-
quence of RSB [14].

To check the stability of the replica-symmetric approx-
imation we have computed the de Almeida-Thouless (AT)
line [15]. As a result we find that below the dotted lines
T o1 shown in Figs. 1 and 2, replica symmetry is broken.
It is interesting to note that for a—0 the temperature

T 57 is given by

172
4 2 _
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One finds as numerical value, e.g., 4 =0.25 for a=0,
a =0, p=3. This quantity A4 becomes smaller with in-

FIG. 2. The T-a diagram for the Hopfield
network with v =w =1, p=6,10 biased, and

p —p unbiased patterns for ¢ =0. The mean-

ing of the curves is explained in the text.

0.0
0.00

0.24
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creasing p. For the Hopfield model, however, T o1 de-
creases to zero exponentially with a [1].

The line T,p always intersects the retrieval phase
boundary T, at the point where the gradient of T, be-
comes infinite. This implies, as conjectured in [14], that
the deflection of the T, line is a consequence of RSB. As
Fig. 1 indicates, the retrieval region below the Tt line is
large for p =3 and the discrepancy between the maximal
value of a, and its value at T =0 is also large. For p=6
and 10 (see Fig. 2) the retrieval region of broken replica
symmetry and the difference between the maximal re-
trieval capacity at finite 7" and its value at 7" =0 is much
smaller.

C. One-step replica-symmetry breaking

It is clear by now that the assumption of replica sym-
metry is far from being justified in the retrieval region
below the T ,7 line. Therefore we have performed a one-
step RSB calculation of the capacity at zero temperature,
starting from Egs. (7)-(11).

Some results are shown in Figs. 1 and 3. In Fig. 1 the
arrows indicate the one-step RSB result for the p=3
capacity at T =0. Compared with the replica-symmetric
capacity values, e.g., 0.9947 for a =0 and 0.5043 for
a =0.4 [recall (12)], we now find the values 1.3864 (re-
spectively, 0.7002). So, the effect of taking into account
one-step RSB is, clearly, that the capacity increases sub-
stantially towards the maximal value, i.e., 1.5625 (respec-
tively, 0.7291) [recall (13)], at the maximal transition tem-
perature T ,. This is also seen in Fig. 3 where the capaci-
ty of the asymmetrical retrieval states is plotted as a func-
tion of the bias parameter a for p =2,3,4 biased and p —p
unbiased patterns. The dotted line represents the
replica-symmetric result and the solid line follows from
the one-step RSB approach. The effect of one-step RSB
becomes smaller with increasing p and with increasing a.
For all finite p and even in the limit 5 — c we find a one-
step RSB value for a, smaller than its maximal value at
finite temperature. In particular, for the Hopfield model
we verified the result a, =0.138 186 49 found in [16].

In the limit a—0 we find again that the stable asym-
metric retrieval solutions occur in a restricted region
[0,a,] of the interval [0,1]. The value of a, obtained here
is the same as the replica-symmetric value.

To get an idea about the stability with respect to fur-
ther breaking, we have calculated the T =0 entropy at
a.. We find, e.g., the following results: for
p=3,8(a=0)=—0.1676X10"!, S(a=0.4)=—0.1682
x107! and for p=10,S(a =0)=—0.2505X10"">.
These values are still negative, but much smaller than
their analogs in the replica-symmetric approximation.
Indeed for p =3 the latter read S(a =0)=—0.1055 and
S(a=0.4)=—0.9341X 10"}, while for p=10 we get
S(a=0)=—0.6699X1072.

o

T T = T
00 02 04 06 08 1.0
a
FIG. 3. The capacity a as a function of a for the Hopfield
network with v =w =1, p=2,3,4 biased, and p —p unbiased
patterns. The meaning of the curves is explained in the text.

V. CONCLUDING REMARKS

In conclusion, we have discussed an alternative learn-
ing rule for the storage and retrieval of a finite number of
biased patterns in the presence of an extensive number of
unbiased patterns in the Hopfield model. In the replica-
symmetric approximation the retrieval capacity for the
biased patterns is enhanced without effectively damaging
the ability of the network to retrieve the other patterns.
The unwanted symmetric mixture states representing
confusion are absent.

The structure of the T-a phase diagram and an explicit
calculation of the AT line indicates a strong RSB effect.
Performing a one-step RSB calculation we find that the
retrieval capacity of these biased patterns is even further
enhanced by a substantial amount, especially for a small
number of biased patterns.

Our results support the conjecture that the full RSB re-
trieval phase line may be found by drawing a line verti-
cally from the intersection of the AT line with the re-
trieval phase boundary to the zero-temperature axis.
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